NOWOŚĆ!Już dziś zapisz się, aby otrzymywać nasz newsletter! Zapisz się 

InnowacjeAktualności

Sztuczna inteligencja kontra nowotwory

Wykorzystując sztuczną inteligencję, naukowcy odkryli, jak w mniej niż 90 sekund badać mutacje genetyczne w nowotworowych guzach mózgu. Badacze mają nadzieję, że poprawi to diagnostykę i leczenie chorych, a także ulepszy rekrutację do badań klinicznych.

Zespół neurochirurgów i inżynierów z Michigan Medicine (USA), we współpracy z badaczami m.in. z New York University, University of California, San Francisco (USA), opracował oparty na sztucznej inteligencji diagnostyczny system przesiewowy, który wykorzystuje szybkie obrazowanie do analizy próbek guza pobranych podczas operacji.

W badaniu obejmującym ponad 150 pacjentów z glejakiem rozlanym, najczęstszym i najbardziej śmiertelnym pierwotnym guzem mózgu, nowo opracowany system zidentyfikował mutacje wykorzystywane przez Światową Organizację Zdrowia do zdefiniowania podgrup molekularnych choroby ze średnią dokładnością przekraczającą 90%. Wyniki opublikowano w „Nature Medicine”.

Narzędzie to, oparte na sztucznej inteligencji, może poprawić dostępność oraz szybkość diagnozowania i opieki nad pacjentami ze śmiertelnymi guzami mózgu – poinformował główny autor i twórca narzędzia, neurochirurg z University of Michigan Health (USA).

Pacjenci z określonym typem glejaka rozlanego, zwanym gwiaździakiem, na całkowitym usunięciu guza mogą zyskać średnio pięć lat w porównaniu z innymi podtypami glejaka rozlanego. Przed opracowaniem tego narzędzia chirurdzy nie dysponowali metodą pozwalającą na różnicowanie rozlanych glejaków podczas operacji. Mediana czasu przeżycia pacjentów ze złośliwymi rozlanymi glejakami wynosi zaledwie 18 miesięcy.

Postęp w leczeniu najbardziej śmiercionośnych guzów mózgu został ograniczony w ostatnich dziesięcioleciach po części dlatego, że trudno było zidentyfikować pacjentów, którzy odnieśli największe korzyści z terapii celowanych – komentuje starszy autor Daniel Orringer, profesor nadzwyczajny neurochirurgii i patologii w NYU Grossman School of Medicine, który opracował stymulowaną histologię Ramana. – Szybkie metody klasyfikacji molekularnej są bardzo obiecujące, jeśli chodzi o ponowne przemyślenie projektu badań klinicznych i udostępnienie pacjentom nowych terapii – podkreśla.

Źródło: nature.com
Foto: pixaby.com

Pros

  • +

Cons

  • -
Powiązane artykuły
LEKARZInnowacje

Zamiast sztucznego implantu – własne tkanki pacjentki

Jeżeli chcesz wiedzieć, czy w Polsce wykonuje się endoskopową mastektomię podskórną z jednoczasową mikrochirurgiczną rekonstrukcją całej piersi tkankami własnymi pacjentki, to znamy…
LEKARZInnowacje

Nowe oprogramowanie pomaga lepiej chronić słuch

Zastanawiasz się, co zrobić, by jeszcze skuteczniej chronić swój słuch, wiemy, gdzie szukać pomocy – najnowsze doniesienia naukowe opisują, że Santino Cozza…
AktualnościCo? Gdzie? Kiedy?Kongres

7. Kongres Zdrowie Polaków (dzień 3.)

Za nami trzeci dzień 7. Kongresu Zdrowie Polaków, który w tym roku odbywa się pod hasłem „Zdrowie – każdy element ma znaczenie”….
Zapisz się, aby otrzymywać nasz newsletter

    Dodaj komentarz

    Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *