NOWOŚĆ!Już dziś zapisz się, aby otrzymywać nasz newsletter! Zapisz się 

InnowacjeAktualności

Sztuczna inteligencja kontra nowotwory

Wykorzystując sztuczną inteligencję, naukowcy odkryli, jak w mniej niż 90 sekund badać mutacje genetyczne w nowotworowych guzach mózgu. Badacze mają nadzieję, że poprawi to diagnostykę i leczenie chorych, a także ulepszy rekrutację do badań klinicznych.

Zespół neurochirurgów i inżynierów z Michigan Medicine (USA), we współpracy z badaczami m.in. z New York University, University of California, San Francisco (USA), opracował oparty na sztucznej inteligencji diagnostyczny system przesiewowy, który wykorzystuje szybkie obrazowanie do analizy próbek guza pobranych podczas operacji.

W badaniu obejmującym ponad 150 pacjentów z glejakiem rozlanym, najczęstszym i najbardziej śmiertelnym pierwotnym guzem mózgu, nowo opracowany system zidentyfikował mutacje wykorzystywane przez Światową Organizację Zdrowia do zdefiniowania podgrup molekularnych choroby ze średnią dokładnością przekraczającą 90%. Wyniki opublikowano w „Nature Medicine”.

Narzędzie to, oparte na sztucznej inteligencji, może poprawić dostępność oraz szybkość diagnozowania i opieki nad pacjentami ze śmiertelnymi guzami mózgu – poinformował główny autor i twórca narzędzia, neurochirurg z University of Michigan Health (USA).

Pacjenci z określonym typem glejaka rozlanego, zwanym gwiaździakiem, na całkowitym usunięciu guza mogą zyskać średnio pięć lat w porównaniu z innymi podtypami glejaka rozlanego. Przed opracowaniem tego narzędzia chirurdzy nie dysponowali metodą pozwalającą na różnicowanie rozlanych glejaków podczas operacji. Mediana czasu przeżycia pacjentów ze złośliwymi rozlanymi glejakami wynosi zaledwie 18 miesięcy.

Postęp w leczeniu najbardziej śmiercionośnych guzów mózgu został ograniczony w ostatnich dziesięcioleciach po części dlatego, że trudno było zidentyfikować pacjentów, którzy odnieśli największe korzyści z terapii celowanych – komentuje starszy autor Daniel Orringer, profesor nadzwyczajny neurochirurgii i patologii w NYU Grossman School of Medicine, który opracował stymulowaną histologię Ramana. – Szybkie metody klasyfikacji molekularnej są bardzo obiecujące, jeśli chodzi o ponowne przemyślenie projektu badań klinicznych i udostępnienie pacjentom nowych terapii – podkreśla.

Źródło: nature.com
Foto: pixaby.com

Pros

  • +

Cons

  • -
Powiązane artykuły
Co? Gdzie? Kiedy?Aktualności

Zapraszamy na 4. konferencję z cyklu „Nauka dla Społeczeństwa”

25 maja o godz. 18.00 odbyła się 4. konferencja z cyklu „Nauka dla Społeczeństwa”.Tym razem specjaliści ze Światowego Centrum Słuchu przedstawili, jak…
PACJENTAktualności

Sztuczna inteligencja a język migowy

Naukowcy z Barcelona Supercomputing Center – Centro Nacional de Supercomputación (BSC-CNS) i Universitat Politècnica de Catalunya (UPC) opracowali narzędzie do tworzenia automatycznych…
AktualnościWszechstronny lekarz

Zapraszamy na Kongres „Nauka dla Społeczeństwa”

– Informacja prasowa Serdecznie zapraszamy wszystkich entuzjastów nauki i lokalne społeczności na trzydniowy Kongres „Nauka dla Społeczeństwa”, który odbędzie się w dniach…
Zapisz się, aby otrzymywać nasz newsletter

    Dodaj komentarz

    Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *